https://ogma.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Hydrothermal MnO2: synthesis, structure, morphology and discharge performance https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:651 5 M), where alpha-MnO2 is formed, and high temperatures (>80degreesC) where beta-MnO2 is formed. The structural variety of gamma-MnO2 in this domain of stability is interpreted in terms of: (i) the fraction of De Wolff defects (P,), which is found to increase as the H2SO4 concentration is decreased and the temperature is increased; (ii) microtwinning (T-w), which despite being less statistically significant, is found to follow a similar trend; (iii) the cation vacancy fraction; (iv) the Mn(III) fraction. Both the latter structural properties decrease as the temperature is increased; but decreasing the H2SO4 concentration leads to a decrease in cation vacancy fraction and an increase in Mn(III) fraction. These structural characteristics, in particular the De Wolff defects, are interpreted on a molecular level in terms of soluble Mn(III) intermediate condensation, in which the electrolyte conditions determine the relative proportions of equatorial-axial edge sharing (ramsdellite domains only), and equatorial-axial corner sharing (both ramsdellite and pyrolusite domains) that occurs. Morphological differentiation is easily established due to the different characteristics of each phase. gamma-MnO2 exists as fine needles (250 nm x 50 nm), beta-MnO2 is formed as much larger columns (1 mum x 100 nm), while alpha-MnO2 is present as small spheres of up to 400 nm in diameter. Electrochemical characterization by voltammetry in an aqueous 9 M KOH electrolyte demonstrates that the performance of gamma-MnO2 Samples is comparable with that of commercial EMD, whereas alpha- and beta-MnO2 suffer from diffusional limitations which lower their operating voltage. For gamma-MnO2, superior performance results when lower temperatures and H2SO4 concentrations are used. This corresponds to intermediate levels of De Wolff defects and microtwinning, and to a cation vacancy fraction minimum.]]> Thu 25 Jul 2013 09:10:27 AEST ]]> Surface characterization of heat-treated electrolytic manganese dioxide https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:362 Sat 24 Mar 2018 07:42:37 AEDT ]]> Electrochemical kinetic behaviour of the aqueous manganese dioxide electrode https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:94 Sat 24 Mar 2018 07:42:06 AEDT ]]> Proton diffusion in gamma-manganese dioxide https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:21 Sat 24 Mar 2018 07:42:06 AEDT ]]>